

Operating Instructions

CFG/i RI FB PRO AllSeas 1.0

DE | Bedienungsanleitung

Inhaltsverzeichnis

Sicherheit
Sicherheit
Technische Daten
Umgebungsbedingungen
Technische Daten Roboter-Interface
Eigenschaften der Datenübertragung
Konfigurationsparameter
Anschlüsse und Anzeigen
Anschlüsse und Anzeigen am RJ 45 Modul
IP-Adresse des Busmoduls einstellen
Übersicht
IP-Adresse am DIP-Schalter einstellen
IP-Adresse am SmartManager einstellen
Ein- und Ausgangssignale
Datentypen 1
Eingangssignale 1
Eingangssignale 1
Wertebereich Working mode1
Wertebereich Processline selection1
Wertebereich TWIN mode1
Wertebereich Documentation mode 1
Ausgangssignale1
Ausgangssignale1
Zuordnung Sensorstatus 1-4
Wertebereich Function status 2
Wertebereich Process Bit2
Wertebereich Waveform positiv und Waveform negativ2
Wertebereich Safety status
TAG-Beschreibung 2
TAG-Tabelle 2
Ansteuerung der Tags2
Modbus - Allgemeine Informationen 2
Protokollbeschreibung2
Datencodierung2
Application Data Unit (ADU)
Modbus - Funktionen
03 (03) Read Holding Register
06 (06) Write Single Register 3
16 (10) Write Multiple Register
27 (17) Read/Write Multiple Register

Sicherheit

Sicherheit

MARNUNG!

Fehlbedienung und fehlerhaft durchgeführte Arbeiten können schwere Personen- und Sachschäden verursachen.

- ► Alle in diesem Dokument beschriebenen Arbeiten und Funktionen dürfen nur von geschultem Fachpersonal ausgeführt werden.
- ▶ Alle in diesem Dokument beschriebenen Arbeiten und Funktionen dürfen nur ausgeführt werden, wenn dieses Dokument vollständig gelesen und verstanden wurde.
- Alle in diesem Dokument beschriebenen Arbeiten und Funktionen dürfen nur ausgeführt werden, wenn sämtliche Dokumente der Systemkomponenten, insbesondere Sicherheitsvorschriften vollständig gelesen und verstanden wurden.

Technische Daten

Umgebungsbedingungen

VORSICHT!

Gefahr durch unzulässige Umgebungsbedingungen.

Schwere Geräteschäden können die Folge sein.

Das Gerät nur bei den nachfolgend angegebenen Umgebungsbedingungen lagern und betreiben.

Temperaturbereich der Umgebungsluft:

- beim Betrieb: -10 °C bis +40 °C (14 °F bis 104 °F)
- bei Transport und Lagerung: -20 °C bis +55 °C (-4 °F bis 131 °F)

Relative Luftfeuchtigkeit:

- bis 50 % bei 40 °C (104 °F)
- bis 90 % bei 20 °C (68 °F)

Umgebungsluft: frei von Staub, Säuren, korrosiven Gasen oder Substanzen, usw.

Höhenlage über dem Meeresspiegel: bis 2000 m (6500 ft).

Technische Daten Roboter-Interface

Spannungsversorgung	intern (24 V)
Schutzart	IP 23

Eigenschaften der Datenübertragung

Anschluss RJ45

Übertragungstechnik:

Ethernet

Medium (4 x 2 Twisted-Pair-Kupferkabel):

ab Kategorie 5 (100 Mbit/s)

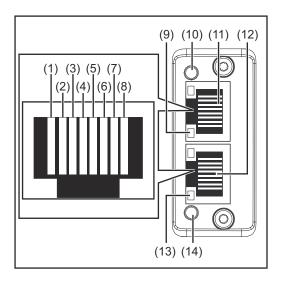
Übertragungs-Geschwindigkeit:

10 Mbit/s oder 100 Mbit/s

Busanschluss:

Ethernet RJ 45

Konfigurationsparameter


Bei einigen Roboter-Steuerungen kann es erforderlich sein, die hier beschriebenen Konfigurationsparameter anzugeben, damit das Busmodul mit dem Roboter kommunizieren kann.

Parameter	Wert		
Vendor name	Fronius International GmbH		
Product code	0304 _{hex} (772 _{dec})		
Major/minor revision	V1.00		

Parameter	Wert
Vendor URL	www.fronius.com
Product name	fronius-fb-pro-modbus-2p
Model name	Fronius FB PRO/i Modbus -TCP-2-Port
User application na- me	Fronius welding controller for the series TPS/i with Modbus-TCP-2-Port

Anschlüsse und Anzeigen

Anschlüsse und Anzeigen am RJ 45 Modul

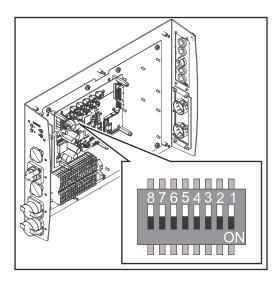
(1)	TX+		
(2)	TX-		
(3)	RX+		
(6)	RX-		
(4)	Normalerweise nicht verwen-		
(5)	det; um die Signalvollständig- keit sicherzustellen, sind die-		
(7)	se Pins miteinander verbun-		
(8)	den und enden über einen Filterkreis am Schutzleiter (PE).		
(9)	LED Verbindung/Aktivität 2		
(10)	LED Modulstatus		

(11)	RJ 45 Ethernet Anschluss 2
(12)	RJ 45 Ethernet Anschluss 1
(13)	LED Verbindung/Aktivität 1
(14)	LED Netzwerkstatus

LED Netzwerkstatus:				
Status Bedeutung				
Aus	keine IP-Adresse oder Ausnahmezustand			
Leuchtet grün	mindestens eine Modbus-Nachricht erhalten			
Blinkt grün wartet auf die erste Modbus-Nachricht				
Leuchtet rot IP-Adressen-Konflikt, schwerer Fehler				
Blinkt rot	Verbindungs-Timeout. Innerhalb des definierten Zeitraumes "Prozess aktiv Timeout" wurde keine Modbus- Nachricht erhalten			

LED Modulstatus:				
Status	Bedeutung			
Aus	keine Versorgungsspannung			
Leuchtet grün	normaler Betrieb			
Leuchtet rot	Hauptfehler (Ausnahmezustand, schwerer Fehler,)			
Blinkt rot	Kleinere Fehler			
Abwechselnd rot/ grün	Firmware-Update läuft			

LED Verbindung/Aktivität:			
Status	Bedeutung		
Aus	Keine Verbindung, keine Aktivität		


LED Verbindung/Aktivität:				
Status Bedeutung				
Leuchtet grün	Verbindung hergestellt (100 Mbit/s)			
Flackert grün	Aktivität (100 Mbit/s)			
Leuchtet gelb	Verbindung hergestellt (10 Mbit/s)			
Flackert gelb	Aktivität (10 Mbit/s)			

IP-Adresse des Busmoduls einstellen

Übersicht

Die IP-Adresse des Busmoduls kann mit dem DIP-Schalter im Interface oder auf der Website des Schweißgeräts eingestellt werden.

IP-Adresse am DIP-Schalter einstellen

DIE IP-Adresse des Busmoduls im Interface im Bereich 192.168.0.xx (xx = DIP-Schalterstellung = 1 bis 63) einstellen.

Werksseitig sind alle Positionen in Stellung OFF geschaltet. In diesem Fall muss die IP-Adresse auf der Website des Schweißgeräts eingestellt werden

Die IP-Adresse wird mit den Positionen 1 bis 6 des DIP-Schalters eingestellt. Die Einstellung erfolgt im Binärformat. Das ergibt einen Einstellbereich von 1 bis 63 im Dezimalformat.

Beispiel:

DIP-Schalter							IP-Adresse	
8	7	6	5	4	3	2	1	1F-Auresse
-	-	OFF	OFF	OFF	OFF	OFF	ON	1
-	-	OFF	OFF	OFF	OFF	ON	OFF	2
-	-	OFF	OFF	OFF	OFF	ON	ON	3
-	-	ON	ON	ON	ON	ON	OFF	62
-	-	ON	ON	ON	ON	ON	ON	63

IP-Adresse am SmartManager einstellen

IP-Adresse des verwendeten Schweißgeräts notieren:

- 1 Am Bedienpanel des Schweißgeräts "Voreinstellungen" auswählen
- 2 Am Bedienpanel des Schweißgeräts "System" auswählen
- 3 Am Bedienpanel des Schweißgeräts "Information" auswählen
- 4 Angezeigte IP-Adresse notieren

Website des Schweißgeräts im Internetbrowser aufrufen:

- 5 Computer mit dem Netzwerk des Schweißgeräts verbinden
- IP-Adresse des Schweißgeräts in die Suchleiste des Internetbrowsers eingeben und bestätigen
- Standard-Benutzernamen (admin) und Passwort (admin) eingeben
 - Website des Schweißgeräts wird angezeigt

IP-Adresse des Busmoduls einstellen:

8 Auf der Website des Schweißgeräts den Reiter "RI FB PRO/i" auswählen

- 9 Unter "Feldbus Konfiguration" die gewünschte IP-Adresse für das Interface eingeben
- [10] "Konfiguration setzen" auswählen
- "Feldbus-Modul neu starten" auswählen die eingestellte IP-Adresse wird übernommen

Ein- und Ausgangssignale

Datentypen

Folgende Datentypen werden verwendet:

- **UINT16** (Unsigned Integer)
 Ganzzahl im Bereich von 0 bis 65535
- **SINT16** (Signed Integer)
 Ganzzahl im Bereich von -32768 bis 32767

Umrechnungsbeispiele:

- für positiven Wert (SINT16)
 z.B. gewünschter Drahtvorschub x Faktor
 12.3 m/min x 100 = 1230_{dez} = 04CE_{hex}
- für negativen Wert (SINT16)
 z.B. gewünschte Lichtbogen-Korrektur x Faktor
 -6.4 x 10 = -64_{dez} = FFCO_{hex}

Eingangssignale

Eingangssignale Vom Roboter zum Schweißgerät

Gültig ab Firmware V2.0.0

Sofern nicht anders angegeben, gelten die Signale sowohl für die Schweißprozesse MIG/MAG und WIG als auch für ConstantWire.

Adresse	Byte	Bit	Signal	Datentyp/ Aktivität	Bereich [Einheit]	Fak- tor
F000	0	0-7	Process active timeout	UINT8	0-255	10
	1	8-15	Reserved			

Adresse	Byte	Bit	Signal	Datentyp/ Aktivität	Bereich [Einheit]	Fak- tor
F001	2	0	Welding start	Rising edge		
		1	Robot ready	High		
		2	Error quit	Rising edge		
		3	Gas on	Rising edge		
		4	Wire forward	Rising edge		
		5	Wire backward	Rising edge		
		6	Torch blow out	Rising edge		
		7	Welding simulation	High		
	3	8	Touch sensing	Rising edge		
		9	Booster manual	High		
		10	Beim Schweißverfahren MIG/ MAG: SFI on			
			Beim Schweißverfahren WIG: CAP shaping	High		
			Beim Schweißverfahren Con- stantWire: Reserved			
		11	Beim Schweißverfahren MIG/ MAG:	High		
			Synchro pulse on			
			Beim Schweißverfahren WIG: TAC on	High		
			Beim Schweißverfahren Con- stantWire: Synchro pulse on	High		
		12	Beim Schweißverfahren MIG/ MAG: Wire brake	High		
			Beim Schweißverfahren WIG: Reserved			
			Beim Schweißverfahren Con- stantWire: Wire brake	High		
		13	Torchbody Xchange	High		
		14	Teach mode	High		
		15	Reserved			

Adresse	Byte	Bit	Signal	Datentyp/ Aktivität	Bereich [Einheit]	Fak- tor				
F002	4	0	Process line Bit 0	High						
		1	Process line Bit 1	High						
		2	Beim Schweißverfahren MIG/ MAG: TWIN mode Bit 0	High						
			Beim Schweißverfahren WIG: Reserved							
			Beim Schweißverfahren Con- stantWire: TWIN mode Bit 0	High						
		3	Beim Schweißverfahren MIG/ MAG: TWIN mode Bit 1	High						
							Beim Schweißverfahren WIG: Reserved			
			Beim Schweißverfahren Con- stantWire: TWIN mode Bit 1	High						
		4-7	Reserved							
	5	8	Reserved							
		9	Reserved							
		10	Reserved							
		11	Wire sense start	Rising edge						
						12	Wire sense break	Rising edge		
		13-15	Reserved							
F003	6	0	Documentation mode	High						
		1-7	Reserved							
	7	8-15	Reserved							
F004	8	0-7	Reserved							
	9	8-15	Reserved							
F005	10	0-7	Reserved							
	11	8-15	Reserved							

Adresse	Byte	Bit	Signal	Datentyp/ Aktivität	Bereich [Einheit]	Fak- tor
F006	12	0	Enable resistance overwrite	Rising edge		
		1	Set resistance value	Rising edge		
		2	Enable inductance overwrite	Rising edge		
		3	Set inductance value	Rising edge		
		4-7	Reserved			
	13	8-15	Reserved			
F007	14	0	ExtInput1 => OPT_Output 1	High		
		1	ExtInput2 => OPT_Output 2	High		
		2	ExtInput3 => OPT_Output 3	High		
		3	ExtInput4 => OPT_Output 4	High		
		4	ExtInput5 => OPT_Output 5	High		
		5	ExtInput6 => OPT_Output 6	High		
		6	ExtInput7 => OPT_Output 7	High		
		7	ExtInput8 => OPT_Output 8	High		
	15	8-15	Reserved			
Foo8	16	0	Working Mode Bit 0	High		
		1	Working Mode Bit 1	High		
		2	Working Mode Bit 2	High		
		3	Working Mode Bit 3	High		
		4	Working Mode Bit 4	High		
		5-7	Reserved			
	17	8-13	Reserved			
		14	Command value selection Bit 0	High		
		15	Reserved			
F009	18-19	0-15	Job number	UINT16	0 bis 1000	1
FooA	20-21	0-15	Characteristic number	UINT16	0 bis 65535	1
FooB	22-23	0-15	Beim Schweißverfahren MIG/ MAG: Wire feed speed command value	SINT16	-327,68 bis 327,67 [m/min]	100
			Beim Schweißverfahren WIG: Main current	SINT16	0 bis 6553,5 [A]	10
			Beim Schweißverfahren Con- stantWire: Wire feed speed command value	SINT16	-327,68 bis 327,67 [m/min]	100

Adresse	Byte	Bit	Signal	Datentyp/ Aktivität	Bereich [Einheit]	Fak- tor
FooC	24-25	0-15	Beim Schweißverfahren MIG/ MAG: Arc length correction	SINT16	-10 bis +10	10
			Beim Schweißverfahren WIG: Feeder command value	SINT16	-327,68 bis 327,67 [m/min]	100
			Beim Schweißverfahren ConstantWire: Current	UINT16	0 bis 6553,5 [A]	10
FooD	26-27	0-15	Beim Schweißverfahren MIG/ MAG: Pulse/Dynamic correction	SINT16	-10 bis +10	10
			Beim Schweißverfahren WIG: Wire correction	SINT16	-10 bis +10	10
			Beim Schweißverfahren Con- stantWire: Reserved			
FOOE	28-29	0-15	Beim Schweißverfahren MIG/ MAG: Wire retract correction		0 bis +10	10
			Beim Schweißverfahren WIG: Wire retract end	UINT16	OFF, 1 bis 50 [mm]	1
			Beim Schweißverfahren Con- stantWire: Wire retract correction			
FooF	30-31	0-15	Welding speed	UINT16	0 bis 1000 [cm/min]	10
F010	32-33	0-15	Penetration stabilizer	UINT16	0 bis 1000 [cm/min]	10
F011	34-35	0-15	Arc length stabilizer	SINT16	0 bis +5	10
F012	36-37	0-15	Beim Schweißverfahren MIG/ MAG: Reserved			
			Beim Schweißverfahren WIG: Wire positioning start	UINT16	OFF, 1 bis 50 [mm]	1
			Beim Schweißverfahren ConstantWire: Reserved			
F013	38-39	0-15	Reserved			
F014	40-41	0-15	Reserved			
F015	42-43	0-15	Reserved			
F016	44-45	0-15	Reserved			
F017	46-47	0-15	Reserved			
F018	48-49	0-15	Reserved			
F019	50-51	0-15	Reserved			

Adresse	Byte	Bit	Signal	Datentyp/ Aktivität	Bereich [Einheit]	Fak- tor
F01A	52-53	0-15	Wire forward/backward length	UINT16	OFF (0) / 1 bis 1000 [cm]	1
F01B	54-55	0-15	Wire sense edge detection	UINT16	OFF (0) / 0,5 bis 20,0 [mm]	10
F01C	56-57	0-15	Reserved			
F01D	58-59	0-15	Seam number	UINT16	0 bis 65535	1
F01E	60-61	0-15	Resistance overwrite	UINT16	0 bis +400 [m0hm]	10
F01F	62-63	0-15	Inductance overwrite	UINT16	0 bis +25 [μH]	10
F020	64-65	0-15	Reserved			
F021	66-67	0-15	Reserved			
F022	68-69	0-15	Reserved			
F023	70-71	0-15	Reserved			
F024	72-73	0-15	Reserved			
F025	74-75	0-15	Reserved			
F026	76-77	0-15	Reserved			
F027	78-79	0-15	Reserved			
F028	80-81	0-15	Reserved			
F029	82-83	0-15	Reserved			
F02A	84-85	0-15	Reserved			
Fo2B	86-87	0-15	Reserved			
Fo2C	88-89	0-15	Reserved			
Fo2D	90-91	0-15	Reserved			
F02E	92-93	0-15	Reserved			
F02F	94-95	0-15	Reserved			
F030	96-97	0-15	Reserved			
F031	98-99	0-15	Reserved			

Wertebereich Working mode

Bit 4	Bit 3	Bit 2	Bit 1	Bit o	Beschreibung
0	0	0	0	0	Parameteranwahl intern
0	0	0	0	1	Kennlinien Betrieb Sonder 2-Takt
0	0	0	1	0	Job-Betrieb
0	1	0	0	0	Kennlinien Betrieb 2-Takt
0	1	0	0	1	MIG/MAG Standard-Manuell 2-Takt
1	0	0	0	0	Ruhe-Modus
1	0	0	0	1	Kühlmittel-Pumpe stoppen

Bit 4	Bit 3	Bit 2	Bit 1	Bit o	Beschreibung
1	1	0	0	0	R/L-Messung
1	1	0	0	1	R/L-Abgleich

Wertebereich Betriebsart

Wertebereich Processline selection

Bit 1	Bit o	Beschreibung
0	0	Prozesslinie 1 (default)
0	1	Prozesslinie 2
1	0	Prozesslinie 3
1	1	Reserviert

Wertebereich Prozesslinien-Auswahl

Wertebereich TWIN mode

Bit 1	Bit o	Beschreibung
0	0	TWIN Single mode
0	1	TWIN Lead mode
1	0	TWIN Trail mode
1	1	Reserve

Wertebereich TWIN-Betriebsart

Wertebereich Documentation mode

Bit o	Beschreibung
0	Nahtnummer von Schweißgerät (intern)
1	Nahtnummer von Roboter (Word 19)

 $We rte be reich\ Dokumentations modus$

Ausgangssignale

Ausgangssignale

Vom Schweißgerät zum Roboter

Gültig ab Firmware V2.0.0

Sofern nicht anders angegeben, gelten die Signale sowohl für die Schweißprozesse MIG/MAG und WIG als auch für ConstantWire.

Adresse	Byte	Bit	Signal	Datentyp/ Aktivität	Bereich [Einheit]	Fak- tor
F100	0	0-7	Reserved			
	1	8-15	Reserved			
F101	2	0	Heartbeat power source	High		
		1	Power source ready	High		
		2	Arc stable/Touch signal	High		
		3	Current flow signal	High		
		4	Main current signal	High		
		5	Collision box active	High		
		6	Reserved			
		7	Reserved			
	3	8	Touch signal	High		
		9	Torchbody gripped	High		
		10	Command value out of range	High		
		11	Correction out of range	High		
		12	Process active	High		
		13	Robot motion release	High		
		14	Wire stick workpiece	High		
		15	Beim Schweißverfahren MIG/ MAG: Reserved			
			Beim Schweißverfahren WIG: Electrode overloaded	High		
			Beim Schweißverfahren Con- stantWire: Reserved			

Adresse	Byte	Bit	Signal	Datentyp/ Aktivität	Bereich [Einheit]	Fak- tor
F102 4	4	0	Welding process Bit 0	High		
		1	Welding process Bit 1	High		
		2	Welding process Bit 2	High		
		3	Welding process Bit 3	High		
		4	Welding process Bit 4	High		
		5-7	Reserved			
	5	8	Parameter selection internal	High		
		9	Characteristic number valid	High		
		10-15	Reserved			
F103	6	0-7	Reserved			
	7	8-13	Reserved			
		14	Short circiut contact tip	High		
		15	Gas nozzle touched	High		
F104	8	0	Sensor status 1	High		
		1	Sensor status 2	High		
		2	Sensor status 3	High		
		3	Sensor status 4	High		
		4-7	Reserved			
	9	8	Function status Bit 0	High		
		9	Function status Bit 1	High		
		10	Reserved			
		11	Safety status Bit 0	High		
		12	Safety status Bit 1	High		
		13	Reserved			
		14	Notification	High		
		15	System not ready	High		

Adresse	Byte	Bit	Signal	Datentyp/ Aktivität	Bereich [Einheit]	Fak- tor
F105	10	0	Limit signal	High		
		1-7	Reserved			
	11	8	Reserved			
		9	Beim Schweißverfahren MIG/ MAG: Twin synchronization active	High		
			Beim Schweißverfahren WIG: Reserved			
			Beim Schweißverfahren ConstantWire: Twin synchronisation active	High		
		10	Main supply status	High		
		11	Standby active	High		
		12	Active processline Bit 0	High		
		13	Active processline Bit 1	High		
		14	Warning	High		
		15	Reserved			
F106	12	0-7	Reserved			
	13	8-15	Reserved			
F107	14	0	Ext. output 1 => OPT_input 1	High		
		1	Ext. output 2 => OPT_input 2	High		
		2	Ext. output 3 => OPT_input 3	High		
		3	Ext. output 4 => OPT_input 4	High		
		4	Ext. output 5 => OPT_input 5	High		
		5	Ext. output 6 => OPT_input 6	High		
		6	Ext. output 7 => OPT_input 7	High		
		7	Ext. output 8 => OPT_input 8	High		
	15	8-15	Reserved			
F108	16-17	0-15	Error number	UINT16	0 bis 65535	1
F109	18-19	0-15	Warning number	UINT16	0 bis 65535	1
F10A	20-21	0-15	Welding voltage	UINT16	0 bis 327,67 [V]	100
F10B	22-23	0-15	Welding current	UINT16	0 bis 3276,7 [A]	10
F10C	24-25	0-15	Motor current M1	SINT16	-327,68 bis 327,67 [A]	100
F10D	26-27	0-15	Motor current M2	SINT16	-327,68 bis 327,67 [A]	100
F10E	28-29	0-15	Motor current M3	SINT16	-327,68 bis 327,67 [A]	100

Adresse	Byte	Bit	Signal	Datentyp/ Aktivität	Bereich [Einheit]	Fak- tor
F10F	30-31	0-15	Reserved			
F110	32-33	0-15	Wire feed speed	SINT16	-327,68 bis 327,67 [m/min]	100
F111	34-35	0-15	Actual real value seam tracking	UINT16	o bis 6,5535	10000
F112	36-37	0-15	Real power value	UINT16	0 bis 6553,5 [kJ]	10
F113	38-39	0-15	Wire position	SINT16	-327,68 bis 327,67 [mm]	100
F114	40-41	0-15	Resistance	UINT16	0 bis +400 [mOhm]	10
F115	42-43	0-15	Inductance	UINT16	0 bis +25 [μH]	10
F116	44-45	0-15	Reserved			
F117	46-47	0-15	Reserved			
F118	48-49	0-15	Reserved			
F119	50-51	0-15	Reserved			
F11A	52-53	0-15	Reserved			
F11B	54-55	0-15	Reserved			
F11C	56-57	0-15	Reserved			
F11D	58-59	0-15	Reserved			
F11E	60-61	0-15	Reserved			
F11F	62-63	0-15	Reserved			
F120	64-65	0-15	Reserved			
F121	66-67	0-15	Reserved			
F122	68-69	0-15	Reserved			
F123	70-71	0-15	Reserved			
F124	72-73	0-15	Reserved			
F125	74-75	0-15	Reserved			
F126	76-77	0-15	Reserved			
F127	78-79	0-15	Reserved			
F128	80-81	0-15	Reserved			
F129	82-83	0-15	Reserved			
F12A	84-85	0-15	Reserved			
F12B	86-87	0-15	Reserved			
F12C	88-89	0-15	Reserved			
F12D	90-91	0-15	Reserved			
F12E	92-93	0-15	Reserved			
F12F	94-95	0-15	Reserved			

Adresse	Byte	Bit	Signal	Datentyp/ Aktivität	Bereich [Einheit]	Fak- tor
F130	96-97	0-15	Reserved			
F131	98-99	0-15	Reserved			

Zuordnung Sensorstatus 1-4

Signal	Beschreibung
Sensor status 1	OPT/i WF R Drahtende (4,100,869)
Sensor status 2	OPT/i WF R Drahtfass (4,100,879)
Sensor status 3	OPT/i WF R Ringsensor (4,100,878)
Sensor status 4	Drahtpufferset CMT TPS/i (4,001,763)

Zuordnung Sensorstatus

Wertebereich Function status

Bit 1	Bit o	Beschreibung
0	0	Inactive
0	1	Idle
1	0	Finished
1	1	Error

Wertebereich Funktionsstatus

Wertebereich Process Bit

Bit 4	Bit 3	Bit 2	Bit 1	Bit o	Beschreibung
0	0	0	0	0	kein Prozess oder keine Parameteraus- wahl intern
0	0	0	0	1	MIG/MAG Puls-Synerigc
0	0	0	1	0	MIG/MAG Standard-Synergic
0	0	0	1	1	MIG/MAG PMC
0	0	1	0	0	MIG/MAG LSC
0	0	1	0	1	MIG/MAG Standard-Manuell
0	0	1	1	0	Elektrode
0	0	1	1	1	WIG
0	1	0	0	0	СМТ
0	1	0	0	1	ConstantWire
0	1	0	1	0	ColdWire
0	1	0	1	1	DynamicWire

Wertebereich Prozess Bit

Wertebereich Waveform positiv und Waveform negativ

Bit 4	Bit 3	Bit 2	Bit 1	Bit o	Beschreibung
0	0	0	0	1	Kurvenform Rechteck hart
0	0	0	1	0	Kurvenform Rechteck weich
0	0	0	1	1	Kurvenform Dreieck
0	0	1	0	0	Kurvenform Sinus

Wertebereich Kurvenform positiv und Kurvenform negativ

Wertebereich Safety status

Bit 1	Bit o	Beschreibung
0	0	Reserve
0	1	Halt
1	0	Stopp
1	1	Nicht eingebaut / aktiv

Wertebereich Safety status

TAG-Beschreibung

TAG-Tabelle

Adresse	Signal	Access	Datentyp/Aktivität	Bereich [Einheit]	Faktor
A000	Current 1	write	SINT16	-3276,8 bis 3276,7 [A]	10
A001	Current 2	write	SINT16	-3276,8 bis 3276,7 [A]	10
A002	Current 3	write	SINT16	-3276,8 bis 3276,7 [A]	10
A003	Current 4	write	SINT16	-3276,8 bis 3276,7 [A]	10
A004	Current 5	write	SINT16	-3276,8 bis 3276,7 [A]	10
A005	Current 6	write	SINT16	-3276,8 bis 3276,7 [A]	10
A006	Current 7	write	SINT16	-3276,8 bis 3276,7 [A]	10
A007	Current 8	write	SINT16	-3276,8 bis 3276,7 [A]	10
A008	Voltage 1	write	SINT16	-327,68 bis 327,67 [V]	100
A009	Voltage 2	write	SINT16	-327,68 bis 327,67 [V]	100
AooA	Frequency 1	write	UINT16	1 bis 6553,5 [Hz]	10
AooB	Wire feed 1	write	SINT16	-327,68 bis 327,67 [m/min]	100
AooC	Wire feed 2	write	SINT16	-327,68 bis 327,67 [m/min]	100
AooD	Wire feed 3	write	SINT16	-327,68 bis 327,67 [m/min]	100
AooE	Wire feed 4	write	SINT16	-327,68 bis 327,67 [m/min]	100
AooF	Wire feed 5	write	SINT16	-327,68 bis 327,67 [m/min]	100
A010	Wire feed 6	write	SINT16	-327,68 bis 327,67 [m/min]	100
A011	Time 1	write	UINT16	0 bis 65535 [x 25 μs]	1
A012	Time 2	write	UINT16	0 bis 65535 [x 25 μs]	1
A013	Time 3	write	UINT16	0 bis 65535 [x 25 μs]	1
A014	Time 4	write	UINT16	0 bis 65535 [x 25 μs]	1
A015	Time 5	write	UINT16	0 bis 65535 [x 25 μs]	1
A016	Time 6	write	UINT16	0 bis 65535 [x 25 μs]	1
A017	Time 7	write	UINT16	0 bis 65535 [x 25 μs]	1
A018	Time 8	write	UINT16	0 bis 65535 [x 25 μs]	1
A019	Time 9	write	UINT16	0 bis 65535 [x 25 μs]	1
A01A	Time 10	write	UINT16	0 bis 65535 [x 25 μs]	1
A01B	Factor unsigned 1	write	UINT16	o bis 65,535 [%]	1000
A01C	Factor unsigned 2	write	UINT16	0 bis 65,535 [%]	1000
A01D	Factor unsigned 3	write	UINT16	0 bis 65,535 [%]	1000

Adresse	Signal	Access	Datentyp/Aktivität	Bereich [Einheit]	Faktor
A01E	Factor unsigned 4	write	UINT16	0 bis 65,535 [%]	1000
A01F	Factor unsigned 5	write	UINT16	0 bis 65,535 [%]	1000
A020	Factor unsigned 6	write	UINT16	0 bis 65,535 [%]	1000
A021	Factor unsigned 7	write	UINT16	0 bis 65,535 [%]	1000
A022	Tau 1	write	UINT16	O bis 65535 [x 25 μs]	1
A023	Tau 2	write	UINT16	0 bis 65535 [x 25 μs]	1
A024	Tau 3	write	UINT16	0 bis 65535 [x 25 μs]	1
A025	Tau 4	write	UINT16	O bis 65535 [x 25 μs]	1
A026	Tau 5	write	UINT16	0 bis 65535 [x 25 μs]	1
A027	Current slope 1	write	UINT16	0 bis 65535 [A/ms]	1
A028	Current slope 2	write	UINT16	0 bis 65535 [A/ms]	1
A029	Current slope 3	write	UINT16	0 bis 65535 [A/ms]	1
A02A	Current slope 4	write	UINT16	0 bis 65535 [A/ms]	1
A02B	Current slope 5	write	UINT16	0 bis 65535 [A/ms]	1
A02C	Current slope 6	write	UINT16	0 bis 65535 [A/ms]	1
A02D	Current slope 7	write	UINT16	0 bis 65535 [A/ms]	1
A02E	MIG-45-1	write	UINT16	0 bis 65535 [N]	1
A02F	MIG-45-2	write	UINT16	0 bis 65535 [N]	1
A030	MIG-45-3	write	UINT16	0 bis 65535 [N]	1
A031	Number unsigned 1	write	UINT16		1
A032	Number unsigned 2	write	UINT16		1
A033	Number unsigned 3	write	UINT16		1
A034	Number unsigned 4	write	UINT16		1
A035	Resistance 1	write	UINT16	0 bis 65,535 [mOhm]	1000
A036	Resistance 2	write	UINT16	0 bis 65,535 [mOhm]	1000
A037	Resistance 3	write	UINT16	0 bis 65,535 [mOhm]	1000
A038	Resistance 4	write	UINT16	0 bis 65,535 [mOhm]	1000
A039	Length 1	write	SINT16	-327,68 bis 327,67 [mm]	1000
Ao3A	Length 2	write	SINT16	-327,68 bis 327,67 [mm]	1000
A03B	Factor signed 1	write	SINT16	-327,68 bis 327,67 [%]	1000
A03C	Factor signed 2	write	SINT16	-327,68 bis 327,67 [%]	1000
A100	Gas preflow ¹⁾	write	UINT16	0 bis 9,9 [s]	10
A101	Gas postflow ¹⁾	write	UINT16	0 bis 9,9 [s]	10
A102	Inching speed ¹⁾	write	UINT16	0,5 bis vDmax [m/min]	10

Adresse	Signal	Access	Datentyp/Aktivität	Bereich [Einheit]	Faktor
A103	Starting current ²⁾	write	UINT16	0 bis 200 [%]	1
A104	Starting current time ²⁾	write	UINT16	0,01 bis 30 [s]	100
A105	Slope 1 ²⁾	write	UINT16	0,01 bis 30 [s]	100
A106	Slope 2 ²⁾	write	UINT16	0,01 bis 30 [s]	100
A107	End current ²⁾	write	UINT16	0 bis 200 [%]	1
A108	End current time ²⁾	write	UINT16	0,01 bis 30 [s]	100
A109	Pulse frequency ²⁾	write	UINT16	0,1 bis 1999,9 [Hz]	10
A10A	Gas preflow ²⁾	write	UINT16	0 bis 9,9 [s]	10
A10B	Gas postflow ²⁾	write	SINT16	0 bis 9,9 AUTO [s]	10
A10C	Inching speed ²⁾	write	UINT16	0,5 bis vDmax [m/min]	10
A10D	Wire start delay ²⁾	write	UINT16	0,1 bis 9,9 [s]	10
A10E	Wire end delay ²⁾	write	UINT16	0,1 bis 9,9 [s]	10
A10F	Needle diameter ²⁾	write	UINT16	1 bis 6,4 [mm]	10
A110	AC frequency ²⁾	write	UINT16	40 bis 250 [%]	1
A111	AC balance ²⁾	write	UINT16	15 bis 50 [%]	1
A112	Waveform positive ²⁾	write	UINT16		1
A113	Waveform negative ²⁾	write	UINT16		1
A114	Apply characteristic parameters ¹⁾	write	UINT16	0 bis 1000	1

¹⁾Beschreibung MIG/MAG: MIG/MAG Puls-Synergic, MIG/MAG Standard-Synergic, MIG/MAG Standard-Manuell, MIG/MAG PMC, MIG/MAG, LSC

Ansteuerung der Tags

Die Tag-Werte in den Registern 0xA000 bis 0xA03C setzen die Parameter des Schweißgeräts außer Kraft. Wenn ein Variablenwert die Parameter des Schweißgeräts nicht außer Kraft setzen soll, muss einer der beiden folgenden Werte in das Register geschrieben werden:

- 32768 (0x8000) für vorzeichenbehaftete Werte, z. B. Strom 1
- 65535 (0xFFFF) für vorzeichenlose Werte, z. B. Zeit 1

Um die Variablenwerte zu aktivieren, muss das Register 0xA114 (apply characteristic parameters) erhöht werden. Dieses Register ist ein Zähler mit einem Wertebereich von 1 bis 1000. Das bedeutet, dass nach dem Wert 1000 ein Wert von 1 geschrieben werden muss.

²⁾Beschreibung WIG: WIG-Kaltdraht, WIG-Heißdraht

Variablenwert aktivieren:

- Schreiben eines Parameterregisters.
 Nicht verwendete Parameter werden auf 32768 oder 65535 geschrieben.
 Wenn der Parameter nie geschrieben wird, gilt er als unbenutzt.
- Erhöhen des Registers 0xA114. Zunächst 1 schreiben, dann auf 1000 und dann wieder auf 1 erhöhen.

Die Tag-Werte in den Registern 0xA100-0xA113 werden sofort wirksam, wenn sie geschrieben werden.

Modbus - Allgemeine Informationen

Protokollbeschreibung

Die MODBUS-ADU wird vom Client aufgebaut, der die MODBUS-Transaktion initiiert. Über die Funktion erfährt der Server, welche Aktion auszuführen ist. Das MODBUS-Anwendungsprotokoll legt das Format der von einem Client initiierten Anforderung fest.

Das Funktionscode-Feld einer MODBUS-Dateneinheit ist auf einem Byte codiert. Gültige Codes liegen im Dezimalbereich von 1... 255 (128-255 sind für Ausnahmeantworten reserviert). Wenn das Servergerät eine Nachricht von einem Client erhält, gibt das Funktionscode-Feld dem Server an, welche Aktion auszuführen ist.

Wenn mehrere Aktionen auszuführen sind, werden einige Funktionscodes um Sub-Funktionscodes ergänzt. Im Datenfeld von Nachrichten, die von einem Client an Servergeräte gesendet werden, sind zusätzliche Informationen enthalten, anhand derer der Server die im Funktionscode definierte Aktion ausführt. Das können Elemente wie diskrete Adressen, Register-Adressen, die zu handhabende Menge oder die Anzahl der tatsächlichen Datenbytes im Feld sein.

Bei bestimmten Anforderungsarten kann kein Datenfeld (Länge Null) vorhanden sein. In diesem Fall benötigt der Server keine weiteren Informationen, da der Funktionscode allein die Aktion spezifiziert.

Wenn in einer ordnungsgemäß empfangenen MODBUS ADU in Verbindung mit der angeforderten MODBUS-Funktion kein Fehler auftritt, enthält das Datenfeld einer Antwort von einem Server an einen Client die angeforderten Daten. Wenn in Verbindung mit der angeforderten MODBUS-Funktion ein Fehler auftritt, enthält das Feld einen Ausnahmecode, anhand dessen die Serveranwendung die nächste auszuführende Aktion bestimmen kann.

So kann beispielsweise ein Client die Status ON/OFF einer Gruppe diskreter Einoder Ausgänge lesen oder er kann die Dateninhalte einer Registergruppe lesen/schreiben.

In der Antwort an den Client gibt der Server im Funktionscode-Feld entweder eine normale (fehlerfreie) Antwort an oder er teilt mit, dass ein Fehler vorliegt (eine solche Antwort wird als Ausnahmeantwort bezeichnet). Bei einer normalen Antwort wiederholt der Server einfach den ursprünglichen Funktionscode.

Datencodierung

MODBUS verwendet für Adressen und Datenelemente eine Big-Endian-Darstellung. Das bedeutet, wenn eine numerische Anzahl übertragen wird, die größer als ein einzelnes Byte ist, wird das bedeutendste Byte zuerst gesendet.

Registergröße	Wert
16 Bit 1234 _{hex}	das erste gesendete Byte ist 12 _{hex} , dann 34 _{hex}

Application Data Unit (ADU)

In diesem Abschnitt wird beschrieben, wie eine MODBUS-Anforderung oder - Antwort bei der Übertragung in einem MODBUS TCP-Netzwerk gekapselt wird.

MPAP Header	Funktionscode	Daten
-------------	---------------	-------

Beschreibung MPAP-Header: Transaction Identifier Dieser wird für die Transaktionszuordnung verwendet. Der MODBUS-Server kopiert den Transaction Identifier der Anforderung in die Antwort. Länge: 2 Byte Beschreibung: Identifizierung einer MODBUS-Anforderungs-/ Antworttransaktion Client: Vom Client initialisiert Server: Vom Server aus der empfangenen Anforderung zurückkopiert **Protocol Identifier** Dieser wird für Multiplexing innerhalb des Systems verwendet. Das MODBUS-Protokoll wird durch den Wert o identifiziert. Länge: 2 Byte Beschreibung: 0 = Modbus-Protokoll Client: Vom Client initialisiert Server: Vom Server aus der empfangenen Anforderung zurückkopiert Length In diesem Feld wird die Byteanzahl des folgenden Felds angegeben, einschließlich Unit Identifier, Funktionscode und Datenfeld. Länge: 2 Byte Beschreibung: Anzahl der folgenden Bytes Vom Client initialisiert Client:

Unit Identifier

Server:

Dieses Feld wird für Routing-Zwecke innerhalb des Systems verwendet. Es wird in der Regel für die Kommunikation mit einem seriell verbundenen MODBUS-oder MODBUS+-Slave über ein Gateway zwischen einem Ethernet-Netzwerk und einer seriellen MODBUS-Leitung verwendet. Der Wert im Feld wird vom MODBUS-Client in der Anforderung eingestellt und muss genau so in der Antwort des Servers zurückgegeben werden.

Länge:	1 Byte
Beschreibung:	Identifizierung eines Remote Slave, der über eine seri- elle Leitung oder über andere Busse verbunden ist.
Client:	Vom Client initialisiert
Server:	Vom Server aus der empfangenen Anforderung zurück- kopiert

Sämtliche MODBUS/TCP ADU werden über TCP am registrierten Port 502 gesendet.

Modbus - Funktionen

03_{dec} (03_{hex}) Read Holding Register Mit diesem Code wird der Inhalt eines fortlaufenden Blocks von Holding Registern in einem Remote-Gerät gelesen. Die Anforderungs-PDU bestimmt die Startregister-Adresse und die Anzahl der Register.

In der PDU werden Register beginnend mit Null adressiert. So werden Register, die mit 1-16 nummeriert sind, mit 0-15 adressiert.

Die Registerdaten in der Antwort-Nachricht sind als zwei Byte pro Register gepackt, wobei der Binärinhalt in jedem Byte genau abgestimmt ist. In den einzelnen Registern enthält das erste Byte die höherwertigen Bits und das zweite Byte die niedrigerwertigen Bits.

Anforderung		
Funktionscode	1 Byte	03 _{hex}
Startadresse	2 Byte	0000 _{hex} bis FFFF _{hex}
Anzahl der Register	2 Byte	1 bis 125 (7D _{hex})

Antwort		
Funktionscode	1 Byte	03 _{hex}
Anzahl Byte	2 Byte	2 x N*
Registerwert	N* x 2 Bytes	-
N* = Anzahl Register		

Fehler		
Fehlercode	1 Byte	83 _{hex}
Ausnahmecode	1 Byte	O1 oder O2 oder O3 oder O4

Beispiel Beispiel einer Leseanforderung für Register F009 (Jobnummer).				
Anforderung		Antwort		
Feldname	Hex	Feldname	Hex	
Transaction Identifier Hi	00	Transaction Identifier Hi	00	
Transaction Identifier Lo	01	Transaction Identifier Lo	01	
Protocol Identifier Hi	00	Protocol Identifier Hi	00	
Protocol Identifier Lo	00	Protocol Identifier Lo	00	
Length Hi	00	Length Hi	00	
Length Lo	06	Length Lo	05	
Unit Identifier	00	Unit Identifier	00	
Function code	03	Function code	03	
Starting Address Hi	Fo	Byte Count	02	
Starting Address Lo	F9	Register value Hi (108)	02	
No. of Registers Hi	00	Register value Lo (108)	37	

Beispiel Beispiel einer Leseanforderung für Register F009 (Jobnummer).				
Anforderung		Antwort		
Feldname	Hex	Feldname	Hex	
No. of Registers Lo	01			

Der Inhalt von Register F009 (Jobnummer) wird in Form der Zwei-Byte-Werte 237_{hex} oder 567_{dec} angezeigt.

o6_{dec} (o6_{hex}) Write Single Register

Dieser Funktionscode wird zum Schreiben eines Single Holding Register in einem Remote-Gerät verwendet. Die Anforderungs-PDU gibt die Adresse des zu schreibenden Registers an. Register werden mit Null beginnend adressiert. So wird das Register, das mit 1 nummeriert ist, mit 0 adressiert.

Die normale Antwort ist ein Echo der Anforderung und wird nach Schreiben des Registerinhalts zurückgegeben.

Anforderung		
Funktionscode	1 Byte	06 _{hex}
Registeradresse	2 Byte	0000 _{hex} bis FFFF _{hex}
Registerwert	2 Byte	0000 _{hex} oder FFFF _{hex}

Antwort			
Funktionscode	1 Byte	06 _{hex}	
Registeradresse	2 Byte	0000 _{hex} bis FFFF _{hex}	
Registerwert	2 Byte	0000 _{hex} oder FFFF _{hex}	

Fehler		
Fehlercode	1 Byte	86 _{hex}
Ausnahmecode	1 Byte	O1 oder O2 oder O3 oder O4

Beispiel Beispiel einer Anforderung zum Schreiben des Werts 237 $_{\rm hex}$ (567 $_{\rm dec}$) in Register F009 (Jobnummer).

Anforderung		Antwort	
Feldname	Hex	Feldname	Hex
Transaction Identifier Hi	00	Transaction Identifier Hi	00
Transaction Identifier Lo	01	Transaction Identifier Lo	01
Protocol Identifier Hi	00	Protocol Identifier Hi	00
Protocol Identifier Lo	00	Protocol Identifier Lo	00
Length Hi	00	Length Hi	00
Length Lo	06	Length Lo	05
Unit Identifier	00	Unit Identifier	00
Function code	03	Function code	03
Register Address Hi	Fo	Register Address Hi	02

Beispiel Beispiel einer Anforderung zum Schreiben des Werts 237_{hex} (567_{dec}) in Register F009 (Jobnummer). Anforderung Antwort Feldname Feldname Hex Hex Register Address Lo Register Address Lo F9 02 Register Value Hi Register Value Hi 00 37 Register Value Lo Register Value Lo 01

16_{dec} (10_{hex}) Write Multiple Register

Reisniel

Dieser Funktionscode wird zum Schreiben eines Blocks von fortlaufenden Registern in einem Remote-Gerät verwendet. Die angeforderten geschriebenen Werte werden im Anforderungsdatenfeld angegeben. Die Daten werden in zwei Byte pro Register gepackt. Die normale Antwort gibt den Funktionscode, die Startadresse und die Anzahl der geschriebenen Register zurück.

Anforderung			
Funktionscode	1 Byte	10 _{hex}	
Startadresse	2 Byte	0000 _{hex} bis FFFF _{hex}	
Anzahl Register	2 Byte	0001 _{hex} oder 0078 _{hex}	
Anzahl Byte	1 Byte	2 x N*	
Registerwerte	N* x 2 Bytes	Wert	
N* = Anzahl der zu schreibenden Register			

Antwort		
Funktionscode	1 Byte	10 _{hex}
Startadresse	2 Byte	0000 _{hex} bis FFFF _{hex}
Anzahl der Register	2 Byte	1 bis 123 (7B _{hex})

Fehler		
Fehlercode	1 Byte	90 _{hex}
Ausnahmecode	1 Byte	01 oder 02 oder 03 oder 04

Beispiel einer Anforderung zum Schreiben von zwei Registern (F00B $_{\rm hex}$ - F00C $_{\rm hex}$).				
Anforderung Antwort				
Feldname	Hex	Feldname	Hex	
Transaction Identifier Hi	00	Transaction Identifier Hi	00	
Transaction Identifier Lo	01	Transaction Identifier Lo	01	
Protocol Identifier Hi	00	Protocol Identifier Hi	00	
Protocol Identifier Lo	00	Protocol Identifier Lo	00	
Length Hi	00	Length Hi	00	

Beispiel
Beispiel einer Anforderung zum Schreiben von zwei Registern (FOOB _{hex} -
FooC _{hex}).

Anforderung		Antwort	
Feldname	Hex	Feldname	Hex
Length Lo	11	Length Lo	11
Unit Identifier	00	Unit Identifier	00
Function code	10	Function code	10
Starting Address Hi	Fo	Starting Address Hi	Fo
Starting Address Lo	оВ	Starting Address Lo	оВ
Quantity of Registers Hi	00	Quantity of Registers Hi	00
Quantity of Registers Lo	02	Quantity of Registers Lo	02
Byte Count	04		
Register Value Hi	04		
Register Value Lo	CE		
Register Value Hi	FF		
Register Value Lo	Со		

23_{dec} (17_{hex}) Read/Write Multiple Register

Dieser Funktionscode führt eine Kombination aus einer Lese- und einer Schreiboperation in einer MODBUS-Transaktion aus. Dabei wird zuerst die Schreib- und dann die Leseoperation durchgeführt.

Holding Register werden mit Null beginnend adressiert. So werden die Holding Register 1-16 in der PDU mit 0-15 adressiert.

Die Anforderungs-PDU gibt an:

- die Startadresse und die Anzahl der zu lesenden Holding Register
- die Startadresse, die Anzahl der Holding Register und die Daten für den Schreibvorgang.

Im Feld mit der Anzahl der Bytes wird die Anzahl der Bytes angegeben, die im Daten-schreiben-Feld folgen müssen.

Die normale Antwort enthält die Daten aus der Gruppe der gelesenen Register. Im Feld mit der Anzahl der Bytes wird die Anzahl der Bytes angegeben, die im Daten-lesen-Feld folgen müssen.

Anforderung		
Funktionscode	1 Byte	17 _{hex}
Lese-Startadresse	2 Byte	0000 _{hex} bis FFFF _{hex}
Anzahl Register zu lesen	2 Byte	0001 _{hex} bis ca. 0076 _{hex}
Schreib-Startadres- se	2 Byte	0000 _{hex} bis FFFF _{hex}
Anzahl Register zu schreiben	2 Byte	0001 _{hex} bis ca. 0076 _{hex}

Anforderung		
Anzahl Byte schreiben	1 Byte	2 x N*
Registerwerte schreiben	N* x 2 Bytes	
N* = Anzahl der zu schreibenden Register		

Antwort		
Funktionscode	1 Byte	17 _{hex}
Anzahl Byte	1 Byte	2 x N*
Registerwerte schreiben	N* x 2 Bytes	
N* = Anzahl der zu lesenden Register		

Fehler		
Fehlercode	1 Byte	97 _{hex}
Ausnahmecode	1 Byte	O1 oder O2 oder O3 oder O4

Beispiel
Beispiel einer Anforderung zum Lesen von 2 Registern und zum Schreiben von
2 Registern.

Anforderung		Antwort	
Feldname	Hex	Feldname	Hex
Transaction Identifier Hi	00	Transaction Identifier Hi	00
Transaction Identifier Lo	01	Transaction Identifier Lo	01
Transaction Identifier Hi	00	Transaction Identifier Hi	00
Transaction Identifier Lo	01	Transaction Identifier Lo	01
Protocol Identifier Hi	00	Protocol Identifier Hi	00
Protocol Identifier Lo	00	Protocol Identifier Lo	00
Length Hi	00	Length Hi	00
Length Lo	11	Length Lo	7
Unit Identifier	00	Unit Identifier	00
Function code	17	Function code	17
Read Starting Address Hi	F1	Byte Count	2
Read Starting Address Lo	οΑ	Read Registers Value Hi	04
Quantity to Read Hi	00	Read Registers Value Lo	08
Quantity to Read Lo	2	Read Registers Value Hi	оА
Write Starting Address Hi	Fo	Read Registers Value Lo	C8
Write Starting Address Lo	оВ		
Quantity to Write Hi	00		
Quantity to Write Lo	04		
Write Byte Count	2		
Write Registers Value Hi	04		

Beispiel Beispiel einer Anforderung zum Lesen von 2 Registern und zum Schreiben von 2 Registern.

Anforderung		Antwort	
Feldname	Hex	Feldname	Hex
Write Registers Value Lo	CE		
Write Registers Value Hi	FF		
Write Registers Value Lo	Co		

Fronius International GmbH

Froniusstraße 1 4643 Pettenbach Austria contact@fronius.com www.fronius.com

At <u>www.fronius.com/contact</u> you will find the contact details of all Fronius subsidiaries and Sales & Service Partners.